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Abstract
The uniformly frustrated XY model on the cubic lattice with an anisotropic
coupling constant is studied numerically. Quasi-one-dimensional and quasi-
two-dimensional systems are examined as models for a charge density wave in
a ring crystal and a layer superconductor, respectively. The melting transition of
a vortex lattice is investigated by means of non-equilibrium relaxation analysis.
We find scaling behaviour of the relaxation with a power law, which indicates
that the phase transition is of second order, in contrast to the first-order transition
in the isotropic case. The critical exponents are estimated as β = 0.28 and
zν = 2.3 for the quasi-one-dimensional system and β = 0.40 and zν = 2.9 for
the quasi-two-dimensional system, and α ≈ 0 for both cases. This implies that
the universality classes of the two are different.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Frustrated systems are among the attractive topics in statistical physics. The uniformly
frustrated XY model has been studied as a phenomenological model for high Tc

superconductors and Josephson junction arrays under magnetic fields [1, 2]. In the mixed phase
between the Meissner and normal phases, the magnetic field penetrates the sample as vortex
lines, which are topological defects for the phase of the superconducting order parameter. The
case of magnetic field perpendicular to the CuO layer, i.e., parallel to the c axis, has been
extensively studied by using the frustrated XY model. It was revealed that the melting transition
from the Abrikosov vortex lattice phase to the vortex liquid phase before entering the normal
phase is of first order [3]. This is consistent with the experimental results [4].

0953-8984/07/145207+06$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/14/145207
mailto:nogawa@statphys.sci.hokudai.ac.jp
http://stacks.iop.org/JPhysCM/19/145207


J. Phys.: Condens. Matter 19 (2007) 145207 T Nogawa and K Nemoto

The case of transverse field parallel to the CuO layer is attracting more attention [6, 5, 7, 8].
In this case, the quasi-two-dimensional (Q2D) anisotropy of the electronic mobility in the plane
perpendicular to the magnetic field plays an important role. Vortex lines are confined between
the CuO layers and the vortex core, i.e., the localized normal region, is spreading along the
plane. This is called a Josephson vortex. Josephson vortex lines form a triangular lattice which
is stretched along the layer direction. The melting transition of a Josephson vortex lattice is
predicted to be of second order for sufficiently strong anisotropy in contrast to the isotropic
case with the c axis field [5, 8].

Recently the present authors found that charge density waves (CDW) in a ring-shaped
crystal of quasi-one-dimensional (Q1D) metal [9, 10] can be mapped onto the frustrated XY
model [11]. There, cylindrical bending of the crystal results the frustration between inter-
chain and intra-chain couplings and the three-dimensional CDW order realized in usual whisker
crystals becomes unstable. This frustration is equivalent to that of the superconductors and the
system is regarded as a Q1D superconductor in magnetic field.

In this paper, we numerically investigate the melting transitions of the frustrated systems
with strong anisotropy for both Q1D and Q2D cases, paying attention to the continuity and the
dimensionality of the phase transitions.

2. Model and physical quantities

The Hamiltonian of the uniformly frustrated XY model on a cubic lattice is written as follows:

H =
∑

α=x,y,z

∑

i

Jα cos(θi − θi+α̂ − Ai,i+α̂), Ai,i+α̂ =
{

2π f ix for α = y

0 otherwise.
(1)

Here i = (ix , i y, iz) is the index of a lattice point and α̂ is the unit lattice vector parallel to
the α direction. Ai,i+α̂ is related to the vector potential on the Landau gauge yielding magnetic
field parallel to the z axis. Filling factor f gives the density of vortex lines in the xy plane
and is proportional to the magnetic field. The vorticity can be defined at each plaquette: we
say that a vortex or anti-vortex exists in a plaquette when the sum of the phase difference
along its perimeter is 2π or −2π . In three dimensions the vortex line is found by connecting
vortices. The anisotropy in the coupling constant is introduced as (Jx , Jy, Jz) = (γ, 1, 1)J0 for
the Q1D case (chain along the x axis) and (Jx , Jy, Jz) = (γ, 1, γ )J0 for the Q2D case (layer
perpendicular to the y axis) with the anisotropy parameter γ much larger than unity.

In the ground state the vortex lines penetrating the sample are straight and parallel to the z
axis and they form a lattice in the xy plane. The lattice form depends on Jx/Jy = γ only and
not on Jz , so that Q1D and Q2D systems show the same vortex lattice with the same γ . This
is because the coupling along the z axis is free from the frustration and θ is uniform in the z
direction. As γ increases, the vortex lattice is stretched along the x axis and compressed along
the y axis with fixed f . Finally the distance of vortex lines along the y axis decreases down to
the lattice constant of the y axis at a certain value of γ . Above this γ the form of the vortex
lattice does not depend on γ and the unit lattice vectors are (±1/2 f, 1, 0). This crossover is
expected to occur around γ ≈ γc( f ) = 1/12 f 2 [8].

Since the vortex lines form a two-dimensional lattice, there are Bragg peaks at the
reciprocal lattice vectors qv = (±π f, π, 0) in the structure factor:

Sv(q) = N |vz(q)|2|, vz(q) = N−1
∑

i

vzie
iq·i. (2)
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Here vzi is a vorticity divided by 2π defined at the plaquette made by four lattice points,
(ix, i y, iz), (ix + 1, i y, iz), (ix + 1, i y + 1, iz), (ix, i y + 1, iz). The scalar order parameter is
defined as m = |vz(qv)|.

The problem we are interested in is the property of the phase transition between the vortex
lattice phase and the vortex liquid phase. Equilibrium Monte Carlo simulations of this system
are very difficult because of the huge cost of computation. One reason is the slow relaxation
dynamics, which is concerned with the trapping in metastable state due to the entanglement of
vortex lines. Additionally the system has a large fundamental unit, i.e., a vortex lattice constant,
and then very large samples are needed.

In order to avoid this difficulty, we perform non-equilibrium relaxation analysis [12, 13] in
a short time on the basis of the scaling hypothesis in the vicinity of the critical temperature Tc.
When the system is in the ground state at t = 0, the order parameter can be scaled as

m(ε, t) = εβ F(tεzν). (3)

Here, ε = |T − Tc|/Tc. The critical exponents β, ν and z characterize the power law of order
parameter m, correlation length and relaxation time, respectively. From this scaling, β and zν
can be estimated. Another equation is needed to find the exponents, z and ν, individually. We
calculate the fluctuation of the energy per site e,

fee = N

[ 〈
e(t)2

〉

〈e(t)〉2
− 1

]
∼ t (2−dν)/zν = tα/zν , (4)

just at Tc. The local exponent d ln fee/d ln t determines the critical exponent of specific heat,
α = 2 − dν. Here 〈· · ·〉 means the ensemble average over the individual runs and d = 3 is the
dimension of the system.

3. Numerical result

In this section, the result of the non-equilibrium relaxation analysis is shown for both Q1D
and Q2D anisotropy. The relaxation dynamics at fixed temperature is investigated by means of
Monte Carlo simulations with the Metropolis algorithm. The Monte Carlo steps are regarded
as time t . The initial state is given by the ground state, where

θi = (−1)iy

[
π

4
− 2γ −1

(2π f )2
cos(2π f ia)

]
+ O(γ −2). (5)

This expression is expected from the result of the simulated annealing and variational analysis.
The energy of O(γ −2) minimized by diffusive dynamics before runs start. We note that there
are many degenerate ground states, which are connected to each other by the transformation
θ → θ + 2πniy/L y, (n = 0,±1,±2 · · ·). This transformation conserves vorticity.

3.1. Quasi-one-dimensional system

First, we show the result of the Q1D case. Here filling factor f is chosen to be 1/16 and
γ = 64.0 > γc( f ) = 21.3. We use the samples with size Lx × L y × Lz = 512 × 64 × 64.
Comparing with a smaller sample of 256 × 32 × 32, a finite size effect is not found in the time
range of the simulations. We perform eight independent runs at least for each temperature. The
data only for t > 1000 are used to get rid of the non-universal behaviour in very short time that
does not obey the scaling.

The scaling result obtained by least squares fitting to equation (3) is shown in figure 1.
We determine Tc, β/zν and zν simultaneously by using the data for 9.70 � kBT/J0 � 12.0.
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Figure 1. Dynamical scaling result for the order parameter. The Q1D and Q2D cases are shown in
the same figure. The temperatures are shown in the figure.
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Figure 2. The left figure shows the time evolution of the fluctuation of energy per spin, fee, defined
in equation (4). The temperatures are 9.6 and 61.0J0/kB. The lines are obtained by smoothing
of the data points with local least squares fittings. The sample size and number of samples for
averaging are indicated in the legend. The right figure shows the corresponding local exponents.

We can see clear scaling behaviour both above and below Tc = 9.56J0/kB with the same
critical exponents. Above Tc, m(t) exponentially decreases to zero and converges to a finite
value below Tc. We note that kBTc is of the order of

√
Jx Jz reflecting the short range phase

coherence along the y axis [11].
Figure 2 shows the time evolution of the energy fluctuation at T = 9.6J0/kB ≈ Tc. Within

the accuracy of the data, the local exponent d log fee/d log t at large t cannot be distinguished
from zero. Supposing α = 0, ν equals 2/d = 2/3 and then z = zν/ν = 3.5. There remains a
possibility of α being negative, which yields a cusp singularity in the specific heat. This is the
case of the ferromagnetic transition of the non-frustrated XY model in three dimensions [14].
Such a singularity cannot be detected by the present method.

3.2. Quasi-two-dimensional system

The conditions of the simulations of the Q2D system are fundamentally the same as those for
the Q1D case. The sample size used is 256 × 32 × 256 and the minimum number of runs is 32.
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Table 1. The list of critical temperatures and exponents.

kBTc/
√

Jx Jz β zν ν z = zν/(2/3)

Q1D 1.20 0.28 2.3 (2/3) 3.5
Q2D 0.95 0.40 2.9 (2/3) 4.3

We set γ = 64 and f = 1/16 in order to compare with the result for the Q1D case, so that
the difference is only in Jz . This does not change the frustration in the xy plane and therefore
the scaling behaviour is almost the same as for the Q1D case as shown in figure 1. In the scaling
fitting we use the data for 61.0 � kBT/J0 � 68.0. The critical temperature is 61.0J0/kB, which
is of the same order as Jx (=Jz = √

Jx Jz). The exponents are summarized in table 1.

4. Discussion

The result in the previous section shows that the Q1D and Q2D systems exhibit qualitatively
the same phase transition. This is expected from the fact that there is only a difference in Jz

and this has no effect on the ground state. What is important is the breaking of the frustration
balance in the xy plane.

The critical behaviour characterized by the power laws indicates that the phase transition
is of second order in contrast to the first-order transition for the isotropic case. Such an order
change of the phase transition seems peculiar since anisotropy in the coupling constant can
usually be removed by proper scaling of the spatial length. But this is not the case for large γ

because the vortex lattice state which is related to the regular triangular lattice of the isotropic
model by such scaling should have a distance between vortex lines in the y direction smaller
than the lattice unit, i.e., the spacing of Q2D layers or Q1D chains. Of course this is impossible.
Therefore the system with γ � γc( f ) is essentially different from the isotropic one.

A Kosterlitz–Thouless (KT) phase is proposed for Q2D superconductors [8] but the present
result does not agree with this. The structure factor seems to have delta function peaks and the
order parameter is O(N0) below Tc, which indicates true long range order. Additionally the
power divergent behaviour of the correlation length (ξ ∝ ε−ν ) is different from the exponential
divergence for the KT transition.

Quantitatively, there are some differences between Q1D and Q2D systems. For example,
the critical exponent β differs significantly between these cases, which indicates that the
universality classes are different. We note, however, that more accurate calculation with larger
γ is needed to conclude on the difference because the scaling does not work well as γ decreases
and the error of the critical exponents becomes large. The growth of the relaxation time
is slower than the expected power divergence in the very vicinity of the critical point. One
possible reason for this is that the structure of the free energy minimum becomes affected by
other metastable states, e.g., a vortex lattice state with a lattice constant vector (±1/4 f, 2, 0).
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